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Abstract—This work analyzes the effectiveness of NEAT and
Deep Q-Learning to train agents to play Celeste, a 2D ”plat-
former” with a heavy emphasis on extremely precise movements
known to be challenging for humans. Our results demonstrate
that trained agents can reasonably complete the starting level of
Celeste.
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I. INTRODUCTION

Celeste is a popular 2D platformer game known to be chal-
lenging for humans. The game features a player (Madeline)
that can move through any combination of mechanics: running
left and right, jumping, climbing and dashing. Completing the
game’s levels require precise actions that combine the given
mechanics to form new ones like mid-air dashes, wall jumps
and ”wave-dashing”, a momentum-based traversal technique
with precise timing and spatial accuracy. The many obstacles
and rapid sequences of inputs make it a suitable challenge for
evaluating reinforcement learning agents.

Creating reinforcement learning (RL) agents to play plat-
formers like Celeste represents a compelling application do-
main at the intersection of precise control, real-time decision-
making, and visual perception. These games demand precise
actions in dynamic environments filled with obstacles, tight
timing windows, and complex traversal mechanics. Platform-
ers like Celeste challenge agents to develop robust policies that
can adapt to nuanced terrain layouts and unforgiving failure
conditions, often with sparse or delayed rewards. In some
scenarios, agents may need to learn how to backtrack away
from a linear path to the goal, requiring a more robust policy.

II. PREVIOUS TECHNIQUES

RL agents have been applied to games that require mov-
ing single and multiple agents simultaneously in games like
DOTA2 [1], Atari [3], Super Mario [5], and even Celeste [6]
(the game at the focus of this study). RL has also been applied
for games that require complex planning such as Go [4], Chess
[7] and StarCraft [8]. From previous successes, it appears that
RL agents are capable of tackling Celeste, which is largely
about moving a single agent through an environment according
to some determined plan. The previously seen work for
Celeste, along with the agent trained for Super Mario, a similar
2d platformer, see success with the NEAT algorithm [2]. This
work uses the NEAT algorithm with different inputs. We note
that seeing success with the NEAT algorithm using different

inputs than the previous work highlights the robustness of the
NEAT algorithm.

Deep Q-Learning has been applied to a number of games,
namely the Atari games [3] as a method for learning an ef-
fective policy directly from raw images. Deep Q-Learning has
also shown resilience to sparse rewards and high exploration
complexity (some levels of Celeste require backtracking) in
platformers like Sonic the Hedgehog [9]. Thus, there is good
evidence to suggest that Deep Q-Learning may perform well
in Celeste.

A. NEAT vs. Deep Q-Learning

NEAT evolves neural architectures from provided inputs
and outputs, which makes it well-suited for finding simple
representations that enable the agent to optimize a given
fitness function. However, the evolution process evolves single
neuron connections at a time, which implies that the algorithm
may require many generations to optimize a complex fitness
function that requires a complex network. In contrast, Deep
Q-Learning updates all of its model parameters for every batch
of training episodes, which suggests that it may converge
on an effective policy earlier. However, NEAT can evolve
complex architectures purely from the environment, but the
model architecture in Deep Q-Learning to model the policy
is fixed. We train agents using both algorithms and compare
their differences.
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III. METHODOLOGY

A. Reward Function

In both NEAT and Deep Q-learning, we need to create a
reward function to characterize desired agent performance. We
let one episode comprise the agent’s performance until death,
which can be caused by mechanisms in the game, along with
2 mechanisms proposed in this work to hasten the training
process.

1) The player dies from an in-game mechanism (colliding
with obstacles like spikes, falling through the bottom of
the level, etc.)

2) The player’s x position doesn’t change by at least 0.25
units for 5 seconds

1Code available at https://github.com/dhrumilp15/madelines-policy-climb



3) The distance between the player’s current and previous
position doesn’t change by at least 0.25 units for 5
seconds

4) The player has spent 20 seconds in the current level, but
has not completed it

We add the second and third conditions to quickly end
episodes in which the agent presses inputs that don’t result in
movement (e.g. pressing the left and right inputs at the same
time). Although there may be scenarios in the game where
the player shouldn’t move (e.g. while waiting for obstacles
in the environment to move out of the way), the agent would
often simply not move at all, especially at the start of training.
The last condition acts as a catch-all condition for scenarios
in which the agent repeats the same moves indefinitely (i.e.
jumping between the same two obstacles) without making
meaningful progress in the level.

The reward function is then the difference between the
number of completed levels and the distance to the end of
the level before the agent died:

fitness = numlevels − (distance to end)level (1)

We measure the distance to the end of the level as the distance
from the player’s last position to the top-right corner of a
level. Although the player need not pass the top-right corner
of a level to complete it, the true position that the player must
pass is generally towards the top-right corner of a level, so
this is a reasonable heuristic.

B. Caveats to the Reward Function

The initial reward function also used a time penalty and a
penalty for not moving to encourage the agent to complete
the levels as fast as possible. However, there were edge-cases
in which an agent that dies early in the level while moving
could obtain a higher fitness than an agent that completes more
of the level but dies from not moving. Due to the difficulty
of tuning the balance between penalties, we removed the
penalties. Remarkably, we found that the agent still learned
to complete levels with the simpler reward function.

C. Future efforts for the reward function

Possible avenues for improving the reward function may
include exploring:

1) Giving the agent a reward for completing the level
quickly

2) Improving the accuracy of the distance to the ”goal”
position of a level (coordinates such that, if a player were
to pass these coordinates, the player would complete the
level)

3) Obtaining a per-level estimate for the amount of time
the agent should need to complete it

D. NEAT

We use the NEAT algorithm with 5 genomes and sigmoid
activations. The agent receives inputs corresponding to the
player’s position (2 floats), speed (2 floats), the distances to
obstacles in the 8 cardinal and inter-cardinal directions, along

with the obstacle types (16 integers), stamina (1 float), distance
to the goal (1 float), whether the player is on the ground,
swimming, climbing, and still has their dash (4 booleans) for
a total of 26 inputs. The agent can press any combination of
the game input keys (up, down, left, right, z, x, c) and thus
has 7 possible outputs. In this work, we observe that an agent
trained using the NEAT algorithm under this configuration is
able to complete the starting level of Celeste within an average
of 16 generations.

E. Deep Q-Learning

We use a Deep Q-Learning Network with 3 convolutional
layers followed by 2 linear layers to predict the best move
among the 27 possible options (any combination of the 7 input
keys can be pressed). The agent receives the reward obtained
from 1 at each timestep. We observe that the DQN model can
learn to complete the first level of Celeste after 1000 episodes.

IV. CONCLUSION

This paper evaluates the efficacy of NEAT and Deep Q-
Learning to train agents to play Celeste. Using a simple reward
function, agents trained using either method can complete
levels of Celeste. We also observe that the agent using NEAT
learns to complete levels faster than the one trained with Deep
Q-Learning. Finally, we suggest that a more accurate reward
function may result in faster training.
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